
Open Programmability

Training and Certification

Building NETCONF SND Packages

01
Getting Familiar with SND

By loading the developed SND package, the framework system can

recognize devices and understand their capabilities. After

importing the SND package of a device into the Agile Open

Container (AOC), you can create a device, establish a connection

with the device, collect device data, obtain configuration differences

from the device, and deliver the configuration through the device

management GUI and northbound API automatically generated

based on the device YANG model.

Dynamically

loaded

Mechanism

capability

NETCONF STelnet

Model-driven
mechanism

Mapping
mechanism

Transaction
mechanism

Configuration
preview

Historical
records

Web UI RESTCONF

Service YANG

Mapping

Huawei SND Third-party SND

NE YANG template NE YANG template

..

.

...

Conflict
detection

SSP

SND: refers to specific NE driver. An SND package defines the

device YANG model to shield differences caused because of

different protocols used on devices. The SND framework provides a

general conversion mechanism to quickly customize and deliver the

conversion from the YANG model to protocols.

Definition

Function

SND Package

In the AOC, SND packages are classified into the following types

by protocol:

• NETCONF SND

The general-purpose driver for converting the YANG model

into NETCONF packets is provided for NETCONF-capable

devices. You can quickly customize the device driver based on

the NETCONF packet format.

• CLI SND

The bidirectional rendering driver for converting the YANG

model into the CLI configuration is provided for devices

interconnected through the CLI, for example, NETCONF-

incapable old devices. You can quickly customize device

drivers based on the NE CLI configuration.

SND-NETCONF

API

SND-Huawei-NE8000

SND code

YANG model

extends

SND-CLI

API

SND-Huawei-CX600

SND code

YANG model

extends

SND framework

(CLI driver and NETCONF driver)

Protocol layer

Type

SND Package Types

NETCONF driver

YANG

Inverse

parsing

YANG

Conversion

into packets

for delivery

NETCONF protocol

NE

Open

programmability
SND package

Python

YANG

Platform boundary
Development

boundary

• Device YANG model

Abstracts device capabilities, and includes multiple device

YANG modules. Each module corresponds to a function on the

device. Based on the device YANG model, the mechanism can

automatically generate southbound protocol packets,

automatically generate data tables, support CRUD operations,

and automatically generate northbound APIs and GUIs.

• NETCONF driver framework

Provides a general-purpose conversion mechanism based on

the device YANG model. For configurations to be delivered,

the mechanism automatically converts the configurations into

packets to deliver based on the YANG model. For

configurations to be synchronized from the device to the

controller, the mechanism automatically converts packets into

the corresponding YANG model structure.

• NETCONF protocol

Provides a channel for connecting to the device to issue CLI

packets for delivering or querying configurations to the device.

Concept

Development

• Building third-party packages

Saves the YANG file supported by the device to

the yang directory and develops the handshake

parameters for establishing a connection with the

device.

NETCONF Driver

SND_demo_Python/

pkg.json

python/

com/

__init__.py

huawei/

controller/

devicetype/

snd.py

resources/

logger.conf

yang/

huawei-bfd.yang

huawei-bgp.yang

huawei-ccc.yang

huawei-ifm.yang

huawei-ip.yang

huawei-monitor-group.yang

huawei-vlan.yang

• pkg.json

Package configuration file, which is used to set basic attributes and

callback hooks of the current software package.

• python

Information required for device interconnection, such

as device information, connection information, driver

information, protocol parameter information, and

differentiated device customization.

• Resource file

Stores log configuration files or customized files used in Python.

• yang/*

YANG module of the device. Each module

corresponds to a function on the device. Together,

they form the device YANG model.

Directory structure

NETCONF SND Package Structure

Build an SND

package

Create an

SND package

template

Compile the

SND package

Verify the

SND package

Edit pkg.json

Save the

device YANG

model in the

yang directory

Compile

device driver

configurations

Development Process

02
Building an SND Package

AOC

SSP

SND

New

device

OSS
Objective

Describe how to develop a NETCONF SND package

for Huawei NE8000 M8.

Environment

• IDE: local or online IDE environment

• AOC: local or online AOC environment

Building a NETCONF SND Package for the NE8000 M8

1. Log in to the system, and click

Package Repo in the Quick entry

pane on the homepage. The Package

Repo page is displayed.

2. In the navigation tree on the left, click

Package Management. On the

Package Management page, click

Add. In the displayed dialog box, set

software package parameters.

3. Click OK. An SND package template is

generated.

4. Click in the Operation column to

download the template to the local PC

and decompress it.

Create an SND

package template.

1.2

1.4

1

Creating an SND Package Template

{

"name": "NE8000M8_SND",

"version": "1.0.0",

"description": "NE8000M8_SND",

"package-type": "snd",

"producer": "HUAWEI",

"nce-min-versions": [

"1.0.0"

],

"snd-id": "NE8000M8_SND",

"devices": [

{

"vendor": "HUAWEI",

"device-type": "NetEngine 8000 M8",

"device-version": "V800R012C00SPC300"

}

],

"hooks": [

{

"type": "snd",

"key": "ecs-driver",

"python-class-name": "com.huawei.controller.devicetype.ne8000m8snd.NE8000M8NETCONF"

}

]

}

2 Edit pkg.json.

1. Decompress the SND package

NE8000M8_SND.zip downloaded in the

previous step to the PyCharm project.

2. Open the pkg.json file and modify the

device information.

Callback mapping type, which is set to driver parameter information.

Device version.

Device type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Device vendor.

Triplet, which is used to

map the device to the

SND package.

Callback mapping information, which is used to import device

capabilities into the SND package.

Basic information about

the SND package.

Specific driver parameter information.

Developing the Package Property File

NE8000M8_SND/

pkg.json

python/

resources/

yang/

Directory structure

huawei-aaa@2020-01-09.yang

huawei-aaa-deviations-NE8000-M8@2019-04-23.yang

huawei-aaa-lam@2020-01-09.yang

huawei-aaa-type@2020-01-09.yang

huawei-acl@2020-02-20.yang

huawei-acl-deviations-NE8000-M8@2020-02-20.yang

huawei-acl-ucl@2020-02-20.yang

huawei-acl-ucl-deviations-NE8000-M8@2020-02-20.yang

huawei-arp@2020-02-18.yang

huawei-bd@2019-04-29.yang

huawei-bd-ext@2020-03-06.yang

huawei-bfd@2020-02-20.yang

• yang/*

YANG module of the device. Each module corresponds

to a function on the device. Together, they form the

device YANG model.

Obtain the device YANG model

and save it in the yang directory.
3.1

1. Obtain the YANG model file of the NE8000 M8

from the vendor.

2. Delete the default YANG model file from the

SND package template.

3. Decompress the obtained YANG model to the

yang folder in the SND package template.

Saving the Device YANG Model in the yang Directory

Verify the YANG file.

D:\yang-offline-util> java -jar .\yang-offline-util.jar validate console path .

Verification command:

3.2

To obtain the yang-offline-util.zip package, visit: https://devzone.huawei.com/test/aoc/resDownload.html

1. Download the YANG file verification tool from the

AOC developer community.

2. Decompress yang-offline-util.zip.

3. Copy the YANG model file in the yang directory of

the software package to the directory where

yang-offline-util.zip is decompressed.

4. Open the cmd window, go to the directory where

the verification tool is located, and run the

verification command to verify the YANG model. If

the command output is empty, the YANG file

format is correct.

1

Saving the Device YANG Model in the yang Directory

NetconfSND is the parent class of the SND package. The

default configuration has been implemented in the parent

class. For customized configurations, inherit NetconfSND in

the SND package and override methods in the parent class.

Import the SINGLE_CHANNEL or PROTECTED_MODE

constant, which needs to be performed when the device

connection capability is configured. This constant is used in the

getConnectInfo method to configure a single channel or dual

channels that work in active/standby mode for protection.

Import the ConnectInfos class to configure device connection

information, the ProtocolEntity class to configure the device

connection protocol, and the HelloEntity class to configure Hello

packet information. Additionally, import the

DEFAULT_CONNECT and PRIMARY_CONNECTION

constants. This class is used in the getConnectInfo method.

Import the following classes:

CommonDriverInfo: configures the general-purpose device driver.

This class is used in the getCommonDriverInfo method.

NETCONFDriverInfo: sets the NETCONF driver of the device. This

class is used in the getNetconfDriverInfo method.

Import the SysoidInfo class to configure the device type,

vendor, and model corresponding to the SND. This class

is used in the getSysoidInfo method.

Import the devicemgr.py file, which is used to query certain data

from the device in real time.

1. Before writing Python code, import

necessary classes.

Import necessary classes.

from aoc.snd.netconfsnd import NetconfSND

from aoc.snd.snd_model_pb2.sysoidinfo_pb2 import SysoidInfo

from aoc.snd.snd_model_pb2.connectinfo_pb2 import ConnectInfos, ProtocolEntity, DEFAULT_CONNECT, PRIMARY_CONNECTION, HelloEntity

from aoc.snd.snd_model_pb2.channelInfo_pb2 import SINGLE_CHANNEL, PROTECTED_MODE

from aoc.snd.snd_model_pb2.ecsdriver_pb2 import CommonDriverInfo

from aoc.snd.snd_model_pb2.ecsdriver_pb2 import NetconfDriverInfo

4.1
Compiling Device Driver Configurations

1. Register device information.

2. Configure the device connection capability.

Configure device

management parameters.
4.2

def getSysoidInfo(self, aoccontext, request=None):

sysoidInfo = SysoidInfo()

sysoidEntity = sysoidInfo.sysoidEntity.add()

sysoidEntity.sysoid = "1.3.6.1.4.1.2011.2.360.1.10"

sysoidEntity.deviceType = "ROUTER"

sysoidEntity.deviceModel = "NetEngine 8000 M8"

sysoidEntity.deviceVendor = "HUAWEI"

return sysoidInfo

def getConnectInfo(self, aoccontext, request=None):

self.logger.info('getConnectInfo start.')

connectInfos = ConnectInfos()

primaryConnectInfo = connectInfos.connectInfo.add()

primaryConnectInfo.protocolEntity.protocolType = ProtocolEntity.netconf

primaryConnectInfo.connectPolicy = DEFAULT_CONNECT

primaryConnectInfo.channelInfo.readChannel = SINGLE_CHANNEL

primaryConnectInfo.channelInfo.is_read_share_write = True

primaryConnectInfo.protocolEntity.helloEntity.helloType = HelloEntity.extendType

return primaryConnectInfo

1

2

Sysoid of the device to be registered.

Type of the device to be registered.

Model of the device to be registered.

Vendor of the device to be registered.

Use the NETCONF protocol to establish a shared single read and write channel.

If the read and write channels are not shared, the read channel

is a single channel, and the write channels work in

active/standby mode for protection, set is_read_share_write to

False, readChannel to SINGLE_CHANNEL, and writeChannel

to PROTECTED_MODE.

Compiling Device Driver Configurations

1. Customize a general-purpose device driver.

2. Customize the device NETCONF driver.

Compile configuration

management parameters.
4.3

1

2

def getCommonDriverInfo(self, aoccontext, request=None):

common_driver = CommonDriverInfo()

common_driver.unsupportedOperations = "create,delete"

syncToDel = common_driver.para.add()

syncToDel.key = "sync-to-del-enable"

syncToDel.value = "true"

return common_driver

def getNetconfDriverInfo(self, aoccontext, request=None):

netconf_driver = NetconfDriverInfo()

netconf_driver.phase = "two"

netconf_driver.classification = "huawei-v5"

netconf_driver.testOption = "set"

return netconf_driver

Operations that devices do not support, which will be automatically converted after being

configured. The value create indicates that the create operation is not supported, which needs to

be converted into the merge operation. The value delete indicates that the delete operation is not

supported, which needs to be converted into the remove operation. The value create,delete

indicates that the create and delete operations are not supported, which need to be converted into

merge and remove, respectively.

Whether the configuration instance of southbound devices can be deleted during data consistency

verification. For sync-to-del-enable, the value true indicates that the configuration instance can

be deleted; the value false indicates that the configuration instance cannot be deleted.

Number of phases in which device configurations are delivered. The value

one indicates that configurations are delivered in one phase; the value two

indicates that configurations are delivered in two phases.

Device prototype. The value is huawei-v5 for most Huawei device models and is

huawei-v8 for some old Huawei device models.

Whether packets are delivered in sequential order. The value set indicates that packets

are delivered in non-sequential order.

Compiling Device Driver Configurations

02

Building a Specific NE Driver (SND)

03
Compiling the SND Package

1. Copy the private key private.asc in the

GPG key pair generated by the Gpg4win

tool to the key directory of the software

package.

2. Open Terminal in PyCharm and go to the

bin directory in the SND package.

3. Run the makeFile.bat script to start

packing.

4. After the packing is complete, obtain the

software package and signature file from

the output directory in the SND package.

Compile the

SND package.
1

(dem) D:\ NE8000M8_SND >copy path\to\privkey.asc .\key\privkey.asc

1 file(s) copied.

(dem) D:\ NE8000M8_SND >cd bin

(dem) D:\ NE8000M8_SND \bin>makeFile.bat

2021-03-04 16:20:04,096 INFO [com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign] Zip: Execute success

2021-03-04 16:20:05,086 INFO [com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign] Zip: Clean dir success

2021-03-04 16:20:06,100 INFO [com.huawei.ncecommon.extended.pkg.mgr.tools.common.FileUtil] - [Sign] Key length:3072

2021-03-04 16:20:06,431 INFO [com.huawei.ncecommon.extended.pkg.mgr.tools.common.FileUtil] - [Sign]Generate signature file success.

2021-03-04 16:20:06,433 INFO [com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign] Sign: Execute success

1

2

3

Compiling an SND Package

02

Building a Specific NE Driver (SND)

04
Verifying the SND Package

1. On the Package Repo page of the

AOC, delete the original SND

package template.

2. Import the newly developed SND

package and signature file.

3. Click in the Operation column

to activate the SND package.

Load an SND package.
5.2

5.3

12

3

Loading an SND Package

1. On the AOC, choose Resource > Device

Management.

2. Click Create. On the Create NE page,

enter basic information. The NE type,

software version, and vendor must be the

same as those in devices in the SND

package. In addition, enable NETCONF.

3. After the device is added, you can view

the new device on the Device

Management page.

Manage devices.1

2

2

Managing Devices

1. Choose Device Configuration > Device

Configuration from the main menu and

click Edit in the Operation column.

2. In the displayed dialog box, select a

model, edit the model data, and click

Dry-run to check the protocol packets

delivered to the device.

Deliver the configuration.1

2

3

Delivering the Configuration

<ifm xmlns="urn:huawei:yang:huawei-ifm">

<interfaces>

<interface xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0"

ns0:operation="merge">

<name>GigabitEthernet0/7/0.10</name>

<class>sub-interface</class>

<type>GigabitEthernet</type>

<parent-name>GigabitEthernet0/7/0</parent-name>

<number>10</number>

<mtu>1</mtu>

</interface>

</interfaces>

</ifm>

Build an SND

package

Create an

SND package

template

Compile the

SND package

Verify the

SND package

Edit pkg.json

Save the

device YANG

model in the

yang directory

Compile

device driver

configurations

Development Process

Thank You!

